# Excel to Conduct a t-test for Two Samples - Statistics HW Help

 Our company offers quality and prompt Statistical Homework Help Online. We offer personalized help for any kind of Statistics subjects including Elementary Statistics, Stats 101, Business Statistics, Biostatistics, Probabilities, Advanced Statistics, etc. Our service is convenient, efficient and confidential. We can solve stats problems for you. We can help you with your EXCEL, SPSS, SAS, STATA, JMP and MINITAB assignments and projects. Our rate starts \$35/hour. We provide a Free Quote in hours. Quick turnaround!

 Day Night 36 16 58 30 64 34 71 37 71 40 74 45 75 56 76 61 76 62 77 68 77 69 78 74 79 79 82 80 85 80 86 80 87 80 87 83 88 84 88 84 93 85 93 87 93 87 94 88 94 88 95 88 95 88 96 90 97 91 97 91 98 91 99 92 100 92 100 94 105 98 100

 Day Night Mean 84.68571429 Mean 74.77777778 Standard Error 2.385097792 Standard Error 3.569960898 Median 87 Median 83.5 Mode 93 Mode 80 Standard Deviation 14.11042883 Standard Deviation 21.41976539 Sample Variance 199.1042017 Sample Variance 458.8063492 Kurtosis 2.81565835 Kurtosis 0.699234634 Skewness -1.349649357 Skewness -1.280291357 Range 69 Range 84 Minimum 36 Minimum 16 Maximum 105 Maximum 100 Sum 2964 Sum 2692 Count 35 Count 36
$\begin{array}{cc} & {{H}_{0}}:\sigma _{1}^{2}=\sigma _{2}^{2} \\ & {{H}_{A}}:\sigma _{1}^{2} \not = \sigma _{2}^{2} \\ \end{array}$ $F = \frac{s_{1}^{2}}{s_{2}^{2}}$
 F-Test Two-Sample for Variances Night Day Mean 74.77778 84.68571 Variance 458.8063 199.1042 Observations 36 35 df 35 34 F 2.304353 P(F<=f) one-tail 0.00834 F Critical one-tail 2.249408

$\begin{array}{cc} & {{H}_{0}}:{{\mu }_{1}}\ge {{\mu }_{2}} \\ & {{H}_{A}}:{{\mu }_{1}}<{{\mu }_{2}} \\ \end{array}$ $t=\frac{({{{\bar{X}}}_{1}}-{{{\bar{X}}}_{2}})-({{\mu }_{1}}-{{\mu }_{2}})}{\sqrt{\frac{s_{1}^{2}}{{{n}_{1}}}+\frac{s_{2}^{2}}{{{n}_{2}}}}}$
 t-Test: Two-Sample Assuming Unequal Variances Night Day Mean 74.77777778 84.68571429 Variance 458.8063492 199.1042017 Observations 36 35 Hypothesized Mean Difference 0 df 61 t Stat -2.307711554 P(T<=t) one-tail 0.012211224 t Critical one-tail 1.670218808 P(T<=t) two-tail 0.024422449 t Critical two-tail 1.999624146