SPSS Example How to Work on a Correlation Analysis Case Study - SPSS Help

Problem Statement



We can provide you with the SPSS Help you need, at any level!

Get professional graphs, tables, syntax, and fully completed SPSS projects, with meaningful interpretations and write up, in APA or any format you prefer.

Whether it is for a Statistics class, Business Stats class, a Thesis or Dissertation, you'll find what you are looking for with us

Our service is convenient and confidential. You will get excellent quality SPSS help for you.

Our rate starts at $35/hour. Free quote in hours. Quick turnaround!



Observation

Strength

Age

1

2158.7

15.5

2

1678.15

23.75

3

2316

8

4

2061.3

17

5

2207.5

5

6

1708.3

19

7

1784.7

24

8

2575

2.5

9

2357.9

7.5

10

2277.7

11

11

2165.2

13

12

2399.55

3.75

13

1779.8

25

14

2336.75

9.75

15

1765.3

22

16

2053.5

18

17

2414.4

6

18

2200

12.5

19

2654.2

2

20

1753.7

21.5


Procedures for the Analysis

Results Found

SPSS Correlation analysis

\[{{r}^{2}}={{\left( -\text{0}\text{.9466} \right)}^{2}}=\text{0}\text{.8961}\]
  • Now, a linear regression equation is computed. We have the following table:
:

x

y

x · y

15.5

2158.7

33459.85

240.25

4659985.69

23.75

1678.15

39856.062

564.062

2816187.423

8

2316

18528

64

5363856

17

2061.3

35042.1

289

4248957.69

5

2207.5

11037.5

25

4873056.25

19

1708.3

32457.7

361

2918288.89

24

1784.7

42832.8

576

3185154.09

2.5

2575

6437.5

6.25

6630625

7.5

2357.9

17684.25

56.25

5559692.41

11

2277.7

25054.7

121

5187917.29

13

2165.2

28147.6

169

4688091.04

3.75

2399.55

8998.312

14.062

5757840.203

25

1779.8

44495

625

3167688.04

9.75

2336.75

22783.312

95.062

5460400.562

22

1765.3

38836.6

484

3116284.09

18

2053.5

36963

324

4216862.25

6

2414.4

14486.4

36

5829327.36

12.5

2200

27500

156.25

4840000

2

2654.2

5308.4

4

7044777.64

21.5

1753.7

37704.55

462.25

3075463.69

Sum

266.75

42647.65

527613.638

4672.438

92640455.607

\[b=\frac{n\left( \sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}} \right)-\left( \sum\limits_{i=1}^{n}{{{x}_{i}}} \right)\left( \sum\limits_{i=1}^{n}{{{y}_{i}}} \right)}{n\left( \sum\limits_{i=1}^{n}{x_{i}^{2}} \right)-{{\left( \sum\limits_{i=1}^{n}{{{x}_{i}}} \right)}^{2}}}=\frac{\text{20}\times \text{527613}\text{.638}-\text{266}\text{.75}\times \text{42647}\text{.65}}{\text{20}\times \text{4672}\text{.438}-\text{266}\text{.7}{{\text{5}}^{2}}}=\text{-36}\text{.961}\]

\[a=\bar{y}-b\bar{x}=\text{2132}\text{.382}-\left( -\text{36}\text{.961} \right)\times \text{13}\text{.338}=\text{2625}\text{.355}\] \[Strength=\text{2625}\text{.355}-\text{36}\text{.961}\,Age\]

SPSS Regression Table

  • Now, a histogram of residuals is shown:

SPSS Residuals versus Predicted Values

Conclusions from the SPSS Regression Results

  • A significant correlation was found between the variables Strength and Age. Based on the scatterplot and the correlation, there is a clear negative linear association between them.
  • The linear regression equation found is
\[Strength=\text{2625}\text{.355}-\text{36}\text{.961}\,Age\]
  • The data don’t seem to violate any regression assumption

We provide SPSS Help for Students, at any level!

Get professional graphs, tables, syntax, and fully completed SPSS projects, with meaningful interpretations and write up, in APA or any format you prefer.

Whether it is for a Statistics class, Business Stats class, a Thesis or Dissertation, you'll find what you are looking for with us

Our service is convenient and confidential. You will get excellent quality SPSS help for you.

Our rate starts at $35/hour. Free quote in hours. Quick turnaround!